

Holomorphic functions

Proposition

$H(\Omega)$ is a \mathbb{C} -vector space with

1. $f, g \in \mathcal{H}(\Omega) \implies \alpha f + \beta g \in \mathcal{H}(\Omega)$
2. $f, g \in \mathcal{H}(\Omega) \implies fg \in \mathcal{H}(\Omega)$
3. $f, g \in \mathcal{H}(z_0), g(z_0) \neq 0 \implies \frac{f}{g} \in \mathcal{H}(z_0)$
4. $f \in \mathcal{H}(\Omega, U), g \in \mathcal{H}(U) \implies g \circ f \in \mathcal{H}(\Omega)$

Proposition 2.3

$f(z) = u(x, y) + iv(x, y) \in \mathcal{H}(z_0) \implies$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

or

$$Jf = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & -\frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} & \frac{\partial u}{\partial x} \end{pmatrix}$$

and $|\det Jf| = |f'(z_0)|^2$.

Theorem 2.4

$f = u + iv, u, v \in C^1 \wedge \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \implies f \in \mathcal{H}(\Omega)$.

Theorem 2.6

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}(D_R(0)) \quad f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1} \in \mathcal{H}(D_R(0))$$

with $\frac{1}{R} = \limsup_{n \rightarrow \infty} |a_n|^{1/n}$.

Complex line integrals

Definition: Integral along path

$\gamma : [a, b] \rightarrow \mathbb{C}, f \in C^0(\gamma)$:

$$\int_{\gamma} f(z) dz := \int_a^b f(\gamma(t)) \gamma'(t) dt$$

Proposition

$$f, g \in C^0(\gamma_1, \gamma_2 : [a, b] \rightarrow \mathbb{C}) \implies$$

$$\begin{aligned} \int_{\gamma} \alpha f(z) + \beta g(z) dz &= \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz \\ \int_{-\gamma} f(z) dz &= - \int_{\gamma} f(z) dz \\ \int_{\gamma_1 + \gamma_2} f(z) dz &= \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz \\ \left| \int_{\gamma} f(z) dz \right| &\leq \sup_{z \in \gamma} |f(z)| L(\gamma) \end{aligned}$$

Theorem 3.2

$$f \in C^0(\Omega), \gamma : [a, b] \rightarrow \Omega, F' = f \implies$$

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

Cauchy's Theorem and its applications

Theorem 1.1: Goursat

$$f \in \mathcal{H}(\Omega), T \subseteq \Omega, \mathring{T} \subseteq \Omega \text{ a triangle} \implies$$

$$\int_T f(z) dz = 0$$

Theorem 2.1

$$f \in \mathcal{H}(D_r(z_0)) \implies \exists F : F' = f$$

Theorem 2.2b: Cauchy's Theorem for a disc

$$f \in C^0(D_r(z_0)), f \in \mathcal{H}(D_r(z_0) \setminus z_1) \implies$$

$$\int_{\gamma} f(z) dz = 0 \quad \forall \gamma \in D_r(z_0), \gamma(a) = \gamma(b)$$

Cauchy Integral Formulae

Theorem 4.1: Cauchy Integral Formula / Theorem 4.4 / Corollary 4.3: Cauchy inequalities

$f \in \mathcal{H}(\Omega \supseteq \overline{D})$, $C := \partial D$ positive orientation \implies

$$\frac{1}{2\pi i} \int_C \frac{f(w)}{w-z} dw = f(z) \quad \forall z \in D$$

$f \in \mathcal{H}(\Omega \supseteq D_r(z_0)) \implies$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw \quad \forall z \in D_r(z_0)$$

$f \in \mathcal{H}(\Omega \supseteq \overline{D_r(z_0)}) \implies$

$$|f^{(n)}(z_0)| \leq \frac{n! \cdot \sup_{|w-z_0|=r} |f(w)|}{r^n}$$

Theorem/Corollary 4.5: Liouville's Theorem

$f \in \mathcal{H}(\mathbb{C})$, $\sup_{z \in \mathbb{C}} |f(z)| < \infty \implies f = \text{const.}$

Definition: Order of a function

$f \in \mathcal{H}(\Omega \ni z_0)$:

$$\text{ord}_{z_0} f := \min\{k \geq 0 \mid f^{(k)}(z_0) \neq 0\}$$

Proposition 4.6

$f \in \mathcal{H}(\Omega \ni z_0) \implies$

1. $\text{ord}_{z_0} f = \infty \implies f(z) = 0, \forall z \in D_r(z_0)$
2. $\text{ord}_{z_0} f \neq 0 \implies \exists! h \in \mathcal{H}(D_r(z_0)), h(z_0) \neq 0 : f(z) = (z - z_0)^{\text{ord}_{z_0} f} h(z), \forall z \in D_r(z_0)$
3. $\text{ord}_{z_0}(f + g) \geq \min\{\text{ord}_{z_0} f, \text{ord}_{z_0} g\}$ and $\text{ord}_{z_0}(fg) = \text{ord}_{z_0} f + \text{ord}_{z_0} g$

Theorem 4.8 / Corollary 4.9: Identity theorem / Theorem 4.8b / Corollary 4.9b: Identity theorem / Theorem

$f \in \mathcal{H}(\Omega)$, an infinite set with limit point $z_0 \in \Omega, z_0$. Then $f(z) = 0, \forall z \in \Omega \implies f = 0$

$f, g \in \mathcal{H}(\Omega), f(z) = g(z), \forall z \in U \neq \Omega \implies f = g$.

$f \in \mathcal{H}(\Omega)$, then the following are equivalent:

1. $f = 0$
2. $\exists z_0 \in \Omega : \text{ord}_{z_0} f = \infty$
3. $\{z \in \Omega \mid f(z) = 0\}$ has a limit point in Ω .

$f, g \in \mathcal{H}(\Omega)$, then the following are equivalent:

1. $f = g$
2. $\exists z_0 \in \Omega : f^{(n)}(z_0) = g^{(n)}(z_0), \forall n \geq 0$
3. $\{z \in \Omega \mid f(z) = g(z)\}$ has a limit point in Ω .

$f, g \in \mathcal{H}(\Omega), fg = 0 \implies f = 0, g = 0$.

Theorem 5.1: Morera's Theorem

Converse to [Theorem 1.1 Goursat](#)

$f \in C^0(\Omega), \forall D_r(z_0) \subseteq \Omega, \forall T, \dot{T} \subseteq D_r(z_0) : \int_T f(z) dz = 0 \implies f \in \mathcal{H}(\Omega)$.

Sequences of holomorphic functions

Definition: Locally uniformly convergent / Uniformly convergent on compact sets / Proposition / Theorem 5.2 / Theorem 5.3

$f_n : \Omega \rightarrow \mathbb{C}$ is called locally uniformly convergent or uniformly convergent on compact sets if the following equivalent hold:

1. $\forall z_0 \in \Omega, \exists \delta > 0, D(z_0) \subseteq \Omega : f_n|_{D(z_0)} \text{ converges uniformly.}$
2. $\forall K \subseteq \Omega \text{ compact}, f_n|_K \text{ converges uniformly.}$

$f_n \in C^0(\Omega)$ locally uniformly convergent to $f \implies f \in C^0(\Omega)$.

$f_n \in \mathcal{H}(\Omega)$ locally uniformly convergent to $f \implies f \in \mathcal{H}(\Omega)$.

$f_n \in \mathcal{H}(\Omega)$ locally uniformly convergent to $f \implies f'_n$ locally uniformly convergent to f' .

Theorem: Weierstrass -test

$f_n : \Omega \rightarrow \mathbb{C}, \neq U \subseteq \Omega$. If $\exists (M_n)_{n \geq 1} \subseteq \mathbb{R}, M_n \geq 0 : |f_n(z)| \leq M_n, \forall z \in U, \forall n, M_n < \infty \implies$

$$\sum_{n=1}^{\infty} f_n$$

converges uniformly on U .

Proposition 2.1: Riemann Zeta / Example

$$() := \sum_{n=1}^{\infty} \frac{1}{n}$$

converges absolutely and uniformly on $U := \{z \in \mathbb{C} \mid |z| \geq 1 + \epsilon\}$, $\forall \epsilon > 0$ and $\in \mathcal{H}(\{z \in \mathbb{C} \mid |z| \geq 1\})$.

$z \in \mathbb{C} := \{z \in \mathbb{C} \mid |z| > 0\}$:

$$(z) := \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 z} = 1 + 2 \sum_{n=1}^{\infty} e^{2\pi i n^2 z}$$

Definition: Isolated singularity / Singularity types

$z_0 \in \mathbb{C}$ is a possible isolated singularity of f if $\exists r > 0 : f \in \mathcal{H}(D_r(z_0))$.

Singularities:

1. Removable: can be extended holomorphically: $\frac{\sin z}{z}$
2. Pole: Real singularity: $\frac{1}{z}$
3. Essential singularity: z^{-1}

Definition: Removable singularity / Theorem: Riemann's continuation theorem

$f \in \mathcal{H}(\Omega \setminus \{z_0\})$, z_0 is a removable singularity if $\exists f \in \mathcal{H}(\Omega) : f(z) = f(z_0), \forall z \in \Omega \setminus \{z_0\}$.

$f \in \mathcal{H}(\Omega \setminus \{z_0\})$, z_0 is a removable singularity if the following equivalent hold:

1. f is holomorphically extendable to Ω
2. f is continuously extendable to Ω
3. $\exists r > 0 : f$ is bounded in $D_r(z_0)$
4. $\lim_{z \rightarrow z_0} (z - z_0) f(z) = 0$

Definition: Pole

If $\exists n \in \mathbb{Z} : (z - z_0)^n f(z)$ is bounded near z_0 , then z_0 is a pole of f with the order of the pole $\nu := \min\{n\}$.

Theorem 1.2b

$\in \mathcal{H}(\Omega \setminus \{z_0\})$, the following are equivalent:

1. f has a pole of order ν at z_0

2. $\exists r > 0, g \in \mathcal{H}(D_r(z_0)), g(z_0) \neq 0 : f(z) = \frac{g(z)}{(z-z_0)}, \forall z \in D_r(z_0)$
3. $\exists r > 0, h \in \mathcal{H}(D_r(z_0)), h(z) \neq 0, \forall z \in D_r(z_0) : f(z) = \frac{1}{h(z)}$ where $\text{ord}_{z_0} h =$

Theorem 1.3 / Theorem 1.4 / Lemma

f has a pole of order n at z_0 , then

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \underset{\substack{=: \text{es}_{z_0} f \\ |}}{+} \frac{a_{-1}}{z - z_0} + \underset{\substack{\\ \in \mathcal{K}(D_r(z_0))}}{\downarrow}(z)$$

$$\operatorname{es}_{z_0} f = \lim_{z \rightarrow z_0} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} ((z - z_0)^n f(z))$$

$f, g \in \mathcal{H}(z_0)$, $\text{ord}_{z_0} g = 1 \implies \frac{f}{g}$ has a simple pole with

$$\text{es}_{z_0} \frac{f}{g} = \frac{f(z_0)}{g'(z_0)}$$

Theorem 2.1: Residue formula

$F = \{z_0, \dots, z_n\}$, $f \in \mathcal{H}(\Omega \setminus F)$ with poles in F , $\gamma = \partial D$ positive in Ω , $\gamma \cap F = \emptyset \implies$

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{z_i \in FD} \text{es}_{z_i} f$$

Integral solution methods

1

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

choose

$$f(z) = \frac{1}{1+z^2}$$

and a contour with the top half circle of radius R and let $R \rightarrow \infty$, bounding other parts of the integral.

2

$$\int_{-\infty}^{\infty} \frac{(x)}{(x)} dx$$

where f has no zeros on the real line. For $\partial \geq \partial + 2$ we get

$$\int_R \frac{(z)}{(z)} dz \xrightarrow{R \rightarrow \infty} 0$$

for R the top half circle.

4

$$\int_{-\infty}^{\infty} \frac{(x)}{(x)} \cos(ax) dx$$

choose

$$f(z) = \frac{(z)}{(z)} e^{iaz}$$

such that $|e^{iz}| \leq 1$ where $z \in \mathbb{R}$.

5

$$\int_0^{2\pi} \frac{(\cos t, \sin t)}{(\cos t, \sin t)} dt$$

where f has no zeros on $x^2 + y^2 = 1$. Write $\cos t = \frac{1}{2}(z + \frac{1}{z})$, $\sin t = \frac{1}{2i}(z - \frac{1}{z})$ with $\frac{dz}{iz} = dt$ to solve.

Proposition/Corollary 3.2

z_0 is a pole of f

$$\lim_{z \rightarrow z_0} |f(z)| = \infty$$

Theorem: Casorati-Weierstrass / Picard 1879

$f \in \mathcal{H}(D_r(z_0))$, z_0 is an essential singularity, then $f(D_r(z_0))$ is dense in \mathbb{C} .

$f \in \mathcal{H}(D_r(z_0))$, z_0 is an essential singularity, then $|\mathbb{C} \setminus f(D_r(z_0))| \leq 1$. (Example: for $f(z) = e^{1/z} \implies \mathbb{C} \setminus f(D_r(0)) = \{0\}$.)

Meromorphic functions

Definition: Extended complex plane

$\mathbb{C} := \mathbb{C} \cup \{\infty\}$ with

- $z \in \infty = \infty, \forall z \in \mathbb{C}$

- $z \cdot \infty = \infty, \forall z \in \mathbb{C} \setminus \{0\}$
- $\frac{z}{\infty} = 0, \forall z \in \mathbb{C}$
- $\frac{\infty}{0} = \infty, \forall z \in \mathbb{C} \setminus \{0\}$

Definition: Meromorphic function / Proposition / Proposition

$f : \Omega \rightarrow \mathbb{C}$ is $f \in (\Omega)$ if

1. $f := \{z \in \Omega \mid f(z) = \infty\} = f^{-1}(\{\infty\})$ has no limit point in Ω .
2. f contains the poles of f .
3. $f|_{\Omega \setminus f} \in \mathcal{H}(\Omega)$
4. $\mathcal{H}(\Omega) \subseteq (\Omega)$
5. $f, g \in (\Omega) \implies \alpha f + \beta g \in (\Omega)$, or (Ω) is a vector space.
6. $f, g \in (\Omega), z_0 \in f \setminus g, f =_f f + g, g =_g g + f, f, g \in \mathcal{H}(\Omega)$
 $\implies fg = (f + g)(g + f) = fg + f + g \in \mathcal{H}(\Omega)$
7. 0 $f \in (\Omega)$ and the zeros do not have a limit point in Ω , then $\frac{1}{f} \in (\Omega)$

0 $f \in (\Omega)$ open, connected, then

$$:= \{z \in \Omega \mid f(z) = 0\}$$

has no limit point in Ω .

Definition: Order/Valuation of a function / Proposition

Generalization of [Definition Order of a function](#)

0 $f \in (\Omega \ni z_0), \text{ord}_{z_0} f = k$:

1. $f(z_0) \neq \infty \implies k \geq 0$ is the order of the zero at z_0 .
2. $f(z_0) = \infty \implies k \leq -1$ is the negative order of the pole at z_0 .

0 $f \in (\Omega \ni z_0) \implies$

1. $k = \text{ord}_{z_0} f \quad \exists r \ 0, h \in \mathcal{H}(D_r(z_0)) : h(z_0) \neq 0, f(z) = (z - z_0)^k h(z)$
2. $\text{ord}_{z_0}(fg) = \text{ord}_{z_0} f + \text{ord}_{z_0} g$
3. $f + g \neq 0 \implies \text{ord}_{z_0}(f + g) \geq \min\{\text{ord}_{z_0} f, \text{ord}_{z_0} g\}$

Definition: Singularities at ∞

f analytic for $|z| > \frac{1}{R}, R > 0$ has an isolated singularity at ∞ if

$$g(z) := f\left(\frac{1}{z}\right)$$

has an isolated singularity at $z = 0$. $f \in (\mathbb{C})$ and $\mathcal{H}(\infty)$ or has a pole at $\infty \implies (\mathbb{C})$.

Theorem

$f \in (\mathbb{C}) \implies$

$$f(z) = \frac{(z)}{(z)} \quad (z), (z) \in \mathbb{C}[z]$$

Application of the Residue theorem

Lemma

0 $f \in (\Omega \ni z_0)$, Ω open, connected \implies logarithmic derivative of $f : \frac{f'}{f} \in (\Omega)$ and has simple poles at z_0 if $\text{ord}_{z_0} f \neq 0$ with

$$\text{es}_{z_0} \frac{f'}{f} = \text{ord}_{z_0} f$$

Theorem 4.1: Argument principle

Ω open, connected, γ closed with interior such that residue theorem applies. f has no zeros or poles on $\gamma \implies$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{\substack{z_0 \in \\ \text{ord}_{z_0} f \neq 0}} \text{ord}_{z_0} f = -$$

where is the number of zeros, the number of poles with multiplicity inside .

Theorem 4.3: Rouché

$f, g \in \mathcal{H}(\Omega \supseteq \overline{D_r(z_0)})$, $|f(z)| > |g(z)|$, $\forall z \in C_r(z_0) \implies f, f + g$ have the same number of zeros inside C .

Theorem 4.4: Open mapping theorem

const. $\neq f \in \mathcal{H}(\Omega)$ open, connected, then f is open ($f(U)$ open is open).

Theorem 4.5 / Corollary 4.6: Maximum modulus principle

const. $\neq f \in \mathcal{H}(\Omega)$ open, connected \implies

$$z_0 \in \Omega : |f(z)| \leq |f(z_0)| \quad \forall z \in \Omega$$

or f cannot attain a maximum in Ω . In particular: $\overline{\Omega}$ bounded, $f \in C^0(\Omega) \implies$

$$\mathop{\text{m}}_{z \in \overline{\Omega}} |f(z)| = \mathop{\text{m}}_{z \in \partial\Omega} |f(z)|$$

exists, since f is continuous on the bounded closed set $\overline{\Omega}$.

Homotopy and simply connected domains

Definition: Homotopy

$\gamma_0, \gamma_1 : [a, b] \rightarrow \Omega, \gamma_0(a) = \gamma_1(a), \gamma_0(b) = \gamma_1(b)$ are homotopic in Ω if

$$\begin{aligned} \exists H : [a, b] \times [0, 1] &\rightarrow \Omega \\ (t,) &H(t,) \end{aligned}$$

continuous with

1. $H(t,) = \gamma(t)$
2. $\gamma(t) := H(t,) \in C^0([a, b])$ with the same endpoints

Theorem 5.1: Homotopy theorem

$\gamma_0, \gamma_1 : \rightarrow \Omega, \gamma_0 \sqcup \gamma_1, f \in \mathcal{H}(\Omega) \implies$

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

Definition: Simply connected

Ω is simply connected if every two curves with the same endpoints are homotopic.

Theorem 5.2

$f \in \mathcal{H}(\Omega)$ simply connected has a primitive with γ closed \implies

$$\int_{\gamma} f(z) dz = 0$$

and any two primitives differ by a constant.

The complex logarithm

Definition: Branch of logarithm / Remark

$\text{lo}_{\Omega} \in \mathcal{H}(\Omega)$:

$$\text{ep}(\text{lo}_\Omega z) = z$$

1. $z \neq 0 \implies 0$ Ω is necessary

2. $\Omega = \mathbb{C} \setminus \{0\}$ does not work:

$\text{ep}(f(z)) = z \implies f'(z) \text{ep}(f(z)) = 1 \implies f'(z) = \frac{1}{z}$ does not give 0 integrated over every closed path

3. Two logarithms , differ by

$$- = 2\pi i n, n \in \mathbb{Z} : \text{ep}((z) - (z)) = 1 \implies (z) - (z) \in 2\pi i \text{ constant}$$

Theorem 6.1

$\Omega \subseteq \mathbb{C} \setminus \{0\}$ simply connected $\implies \exists F \in \mathcal{H}(\Omega) : \text{ep}(F(z)) = z$ branch of logarithm.

Definition: Principal branch of logarithm / Proposition / Remark

$\Omega = \mathbb{C}^- := \mathbb{C} \setminus (-\infty, 0]$:

$$\text{o} := \text{lo}_\Omega \quad \wedge \quad \text{lo}_\Omega(1) = 0$$

$$z = r^i \in \mathbb{C}^-, r > 0, -\pi < \arg z < \pi \implies$$

$$\text{o} z = \text{lo} r + i$$

$\text{lo} z + \text{lo} w = \text{lo} zw$ does not hold in general: $w = r^{i\alpha}, z = e^{i\beta}, zw = r^i$ with

$\alpha, \beta \in (-\pi, \pi) \implies \arg zw = \alpha + \beta + \gamma, \gamma \in \{-2\pi, 0, 2\pi\}$ thus

$\text{lo} zw = \text{lo} z + \text{lo} w - \gamma = 0 \quad \alpha + \beta \in (-\pi, \pi)$

$$\text{o}(\{|z| = r \mid -\pi < \arg z < \pi\}) = \{w \mid \text{lo}|z|, -\pi < \arg w < \pi\}$$

$$\text{o}(\{z \mid \arg z = \alpha\}) = \{w \mid \arg w = \alpha\}$$

We can define a branch of logarithm for any $\Omega = \mathbb{C} \setminus (\{z \mid \arg z = \alpha\} \cup \{0\})$.

Definition: Complex power

lo_Ω branch of logarithm:

$$z^\alpha := \text{ep}(\alpha \text{lo}_\Omega z)$$

This depends on $\text{lo}_\Omega : \text{lo}_\Omega \text{lo}_\Omega + 2\pi i k \implies$

$$\text{ep}(\alpha(\text{lo}_\Omega z + 2\pi i k)) = z^{\alpha + 2\pi i k \alpha}$$

Principal branch of logarithm:

$$(z^{1/}) = \text{ep} \left(\frac{1}{-} \text{lo} z \right) \text{ep} \left(\frac{1}{-} \text{lo} z \right) = \text{ep} \left(\cdot \text{lo} z \right) = z$$

Theorem 6.2 / Corollary

$f \in \mathcal{H}(\Omega)$ simply connected, $f(z) \neq 0, \forall z \in \Omega \implies$

$$\exists g \in \mathcal{H}(\Omega) : \text{ep}(g(z)) = f(z)$$

called the logarithm of f and

$$\exists h \in \mathcal{H}(\Omega) : h^2(z) = f(z)$$

called the square root of f .

Proposition

$f \in (\Omega), := \Omega \setminus f : f \in \mathcal{H}(), \gamma_1 \cup \gamma_2 \implies$

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

and if γ_2 satisfies residue theorem with interior \implies

$$\int_{\gamma_1} f(z) dz = 2\pi i \sum_{w \in} \text{es}_w f$$

Definition: Winding number

$\mathbb{C} \ni z_0$ γ closed:

$$\gamma(z_0) = \text{ind}_{\gamma} z_0 := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

Proposition 1.3

γ closed, $\gamma : \Omega = \mathbb{C} \setminus \text{im} \gamma \rightarrow \mathbb{C}$ continuous takes values in \implies is constant on any connected subset of Ω with $\gamma(z) = 0, |z|$ large enough.

Theorem: Residue formula

Generalization of [Theorem 2.1 Residue formula](#)

$f \in (\Omega)$ simply connected, γ closed in $= \Omega \setminus f \implies$

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{z_0 \in f} \gamma(z_0) \text{es}_{z_0} f$$

Conformal maps

Definition: Conformal map

U , open, $f : U \rightarrow$ injective, holomorphic is a conformal map.

f bijective conformal map is a conformal equivalence / biholomorphic / holomorphic isomorphism.

Proposition 1.1 / Remark / Corollary

$f : U \rightarrow$ conformal \implies

$$f'(z) \neq 0 \quad \forall z \in U$$

and $f^{-1} : \text{im } f \subseteq \rightarrow U$ is holomorphic.

Thus $f : U \rightarrow$ conformal equivalence f^{-1} conformal equivalence (conformal equivalence is an equivalence relation).

$f : U \rightarrow$ conformal equivalence, then

$$\begin{aligned} T : \mathcal{H}(\mathbb{C}) &\rightarrow \mathcal{H}(U) \\ &\circ f \end{aligned}$$

is a linear isomorphism of vector spaces.

Examples

- $f : \mathbb{C} \rightarrow \mathbb{C}$, $z \mapsto \frac{z-i}{z+i}$ with $f^{-1} : w \mapsto i \frac{1+w}{1-w}$
- $f : \{z \in \mathbb{C} \mid 0 < \operatorname{Re} z < \frac{\pi}{n}\} \rightarrow \mathbb{C}$, $z \mapsto z^n$ with $f^{-1} : w \mapsto w^{1/n}$
- $\operatorname{o} : \mathbb{C}^- \rightarrow \{z \in \mathbb{C} \mid \operatorname{Re} z > 0 \wedge -\pi < \operatorname{Im} z < \pi\}$ with $\operatorname{o}^{-1} = \operatorname{ep}$
- $\mathbb{C} \setminus C$, since a map $\mathbb{C} \rightarrow$ entire would be bounded and thus constant
([Theorem/Corollary 4.5 Liouville's Theorem](#))

Riemann mapping theorem

Theorem 8.3.1: Riemann mapping theorem / Corollary

$\Omega \neq \mathbb{C}$ simply connected, $z_0 \in \Omega \implies \exists!$ conformal equivalence

$$\begin{aligned} F : \Omega &\rightarrow \mathbb{C} \\ F(z_0) &= 0 \\ F'(z_0) &\in (0, \infty) \subseteq \mathbb{C} \end{aligned}$$

Any simply connected proper subsets of \mathbb{C} are conformally equivalent.

Theorem 2.2 (Step 1) / Corollary

$f : \mathbb{C} \rightarrow \text{automorphism} \implies \exists \in \mathbb{C}, \alpha \in \mathbb{C} : f(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$

$$\begin{aligned} f(0) &= \alpha \\ f'(0) &= (|\alpha|^2 - 1) \end{aligned}$$

and every map of this form is an automorphism of \mathbb{C} .

The map in [Theorem 8.3.1 Riemann mapping theorem / Corollary](#) is unique:

$$f_i : \Omega \rightarrow \mathbb{C}, f_i(z_0) = 0, f'_i(z_0) \neq 0 \implies f_1 = f_2.$$

Lemma: Schwarz

$$f \in \mathcal{H}(\Omega), f(0) = 0 \implies$$

1. $|f(z)| \leq |z|, \forall z \in \Omega$
2. $\exists z_0 \neq 0 : |f(z_0)| = |z_0| \implies \exists \in \mathbb{C} : f(z) = z$
3. $|f'(0)| \leq 1$ with equality $f(z) = z$

Theorem 2.4

$$g : \mathbb{C} \rightarrow \text{automorphism} \implies$$

$$g(z) = \frac{az + b}{z + c} \quad := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in L_2(\mathbb{C})$$

with $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$.

Proposition (Step 2)

$\Omega \subset \mathbb{C}$ open, connected $\implies \exists f : \Omega \rightarrow \mathbb{C}$ conformal with $0 \in f(\Omega)$ (or: Ω is conformally equivalent to a subset of \mathbb{C}).

Lemma

$$:= \{f : \Omega \rightarrow \mathbb{C} \mid \text{conorml} \wedge f(z_0) = 0\} \implies$$

$$:= \sup_{f \in \mathcal{H}} |f'(z_0)| < \infty$$

Key Proposition

$$\exists f \in \mathcal{H}(\Omega) : |f'(z_0)| =$$

Proposition (Step 4)

$f \in \mathcal{E}$ with

$$|f'(z_0)| = \sup_{f \in \mathcal{E}} |f'(z_0)|$$

is a conformal equivalence.

Theorem: Montel

$(f_n)_n \subseteq \mathcal{H}(\Omega)$, $\forall \subseteq \Omega$ compact, $\exists_k \ 0 : |f_n(z)| < k, \forall z \in \subseteq \implies \exists (f_{n_k})$ converging uniformly on compact sets.

Proposition

$(f_n)_n \subseteq \mathcal{E}$, $f_n \rightarrow f, \forall z \in \Omega$ uniformly on compact sets
 $\implies f = \text{const. } f \in \mathcal{E} : \lim_{n \rightarrow \infty} f'_n(z_0) = f'(z_0)$.

Lemma

Ω open, connected, $f_n : \Omega \rightarrow \mathbb{C}$ conformal, $f_n \rightarrow f$ uniformly on compact sets
 $\implies f = \text{const. or injective.}$