
Holomorphic functions
Proposition

H(Ω) is a C-vector space with

Proposition 2.3
f(z) = u(x, y) + iv(x, y) ∈ H (z0) ⟹

∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x

or

Jf = ( ) = ( ) = ( )

and |det Jf| = |f ′(z0)|2.

Theorem 2.4

f = u + iv, u, v ∈ C 1 ∧ ∂u
∂x

= ∂v
∂y

, ∂u
∂y

= − ∂v
∂x
⟹ f ∈ H (Ω).

Theorem 2.6

f(z) =
∞

∑
n=0

anzn ∈ H (DR(0)) f ′(z) =
∞

∑
n=0

nanzn−1 ∈ H (DR(0))

with 1
R

= lim supn→∞|an|1/n.

Complex line integrals
Definition: Integral along path

γ : [a, b] → C, f ∈ C 0(γ):

1. f, g ∈ H (Ω) ⟹ αf + βg ∈ H (Ω)

2. f, g ∈ H (Ω) ⟹ fg ∈ H (Ω)

3. f, g ∈ H (z0), g(z0) ≠ 0 ⟹ f

g
∈ H (z0)

4. f ∈ H (Ω, U), g ∈ H (U) ⟹ g ∘ f ∈ H (Ω)

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∂u
∂x

∂u
∂y

− ∂u
∂y

∂u
∂x

∂u
∂x

− ∂v
∂x

∂v
∂x

∂u
∂x



∫
γ

f(z) dz := ∫
b

a

f(γ(t))γ ′(t) dt

Proposition
f, g ∈ C 0(γ1, γ2 : [a, b] → C) ⟹

Theorem 3.2
f ∈ C 0(Ω), γ : [a, b] → Ω, F ′ = f ⟹

∫
γ

f(z) dz = F(γ(b)) − F(γ(a))

Cauchy's Theorem and its applications
Theorem 1.1: Goursat

f ∈ H (Ω), T ⊆ Ω, T̊ ⊆ Ω a triangle ⟹

∫
T

f(z) dz = 0

Theorem 2.1
f ∈ H (Dr(z0)) ⟹ ∃F : F ′ = f

Theorem 2.2b: Cauchy's Theorem for a disc
f ∈ C 0(Dr(z0)), f ∈ H (Dr(z0) ∖ z1) ⟹

∫
γ

f(z) dz = 0 ∀γ ∈ Dr(z0), γ(a) = γ(b)

Cauchy Integral Formulae

Theorem 4.1: Cauchy Integral Formula /Theorem 4.4 /
Corollary 4.3: Cauchy inequalities

∫
γ

αf(z) + βg(z) dz = α∫
γ

f(z) dz + β∫
γ

g(z) dz

∫
−γ

f(z) dz = −∫
γ

f(z) dz

∫
γ1+γ2

f(z) dz = ∫
γ1

f(z) dz + ∫
γ2

f(z) dz

∫
γ

f(z) dz ≤ sup
z∈γ

|f(z)|L(γ)∣ ∣



f ∈ H (Ω ⊇ D), C := ∂D positive orientation ⟹

1

2πi
∫

C

f(w)

w − z
dw = f(z) ∀z ∈ D

f ∈ H (Ω ⊇ Dr(z0)) ⟹

f(z) =
∞

∑
n=0

an(z − z0)n an =
f (n)(z0)

n!
=

1

2πi
∫

Cr(z0)

f(w)

(w − z0)n+1
dw ∀z ∈ Dr(z0)

f ∈ H (Ω ⊇ Dr(z0)) ⟹

|f (n)(z0)| ≤
n! ⋅ sup|w−z0|=r|f(w)|

rn

Theorem/Corollary 4.5: Liouville's Theorem
f ∈ H (C), supz∈C|f(z)| < ∞ ⟹ f = const.

Definition: Order of a function

f ∈ H (Ω ∋ z0):

ordz0 f := min{k ≥ 0 ∣ f (k)(z0) ≠ 0}

Proposition 4.6
f ∈ H (Ω ∋ z0) ⟹

Theorem 4.8 / Corollary 4.9: Identity theorem / Theorem
4.8b / Corollary 4.9b: Identity theorem / Theorem

f ∈ H (Ω),  an infinite set with limit point z0 ∈ Ω, z0 . Then f(z) = 0, ∀z ∈ ⟹ f 0

.

f, g ∈ H (Ω), f(z) = g(z), ∀z ∈ U ≠ ⟹ f g.

f ∈ H (Ω), then the following are equivalent:

–

–

1. ordz0 f = ∞ ⟹ f(z) = 0, ∀z ∈ Dr(z0)

2. ordz0 f ≠ 0 ⟹ ∃!h ∈ H (Dr(z0)), h(z0) ≠ 0 : f(z) = (z − z0)ordz0 fh(z), ∀z ∈ Dr(z0)

3. ordz0
(f + g) ≥ min{ordz0

f, ordz0
g} and ordz0

(fg) = ordz0
f + ordz0

g

1. f 0

2. ∃z0 ∈ Ω : ordz0
f = ∞

3. {z ∈ Ω ∣ f(z) = 0} has a limit point in Ω.



f, g ∈ H (Ω), then the following are equivalent:

f, g ∈ H (Ω), fg 0 ⟹ f 0 g 0.

Theorem 5.1: Morera's Theorem

Converse to Theorem 1.1 Goursat

f ∈ C 0(Ω), ∀Dr(z0) ⊆ Ω, ∀T , T̊ ⊆ Dr(z0) :
T

f(z) dz = 0 ⟹ f ∈ H (Ω).

Sequences of holomorphic functions
Definition: Locally uniformly convergent / Uniformly
convergent on compact sets / Proposition / Theorem 5.2 /
Theorem 5.3

fn : Ω → C is called locally uniformly convergent or uniformly convergent on
compact sets if the following equivalent hold:

fn ∈ C 0(Ω) locally uniformly convergent to f ⟹ f ∈ C 0(Ω).

fn ∈ H (Ω) locally uniformly convergent to f ⟹ f ∈ H (Ω).

fn ∈ H (Ω) locally uniformly convergent to f ⟹ f ′
n locally uniformly convergent

to f ′.

Theorem: Weierstrass -test

fn : Ω → C, ≠ U ⊆ Ω. If ∃(n)n≥1 ⊆ , n ≥ 0 : |fn(z)| ≤ n, ∀z ∈ U , ∀n, n < ∞ ⟹

∞

∑
n=1

fn

converges uniformly on U .

Proposition 2.1: Riemann Zeta / Example

1. f g

2. ∃z0 ∈ Ω : f (n)(z0) = g(n)(z0), ∀n ≥ 0

3. {z ∈ Ω ∣ f(z) = g(z)} has a limit point in Ω.

1. ∀z0 ∈ Ω, ∃ 0, D(z0) ⊆ Ω : fn|D(z0) converges uniformly.

2. ∀ ⊆ Ω compact, fn| converges uniformly.



() :=
∞

∑
n=1

1

n

converges absolutely and uniformly on U := { ∈ C ∣ e ≥ 1 + }, ∀ 0 and
∈ H ({ ∈ C ∣ e 1}).

z ∈ := {z ∈ C ∣ m z 0}:

(z) := ∑
n∈

2πin2z = 1 + 2
∞

∑
n=1

2πin2z

Definition: Isolated singularity / Singularity types

z0 ∈ C is a possible isolated singularity of f if ∃r 0 : f ∈ H (Dr(z0)).

Singularities:

Definition: Removable singularity / Theorem: Riemann's
continuation theorem

f ∈ H (Ω ∖ {z0}), z0 is a removable singularity if
∃f ∈ H (Ω) : f(z) = f(z), ∀z ∈ Ω ∖ {z0}.

f ∈ H (Ω ∖ {z0}), z0 is a removable singularity if the following equivalent hold:

Definition: Pole

If ∃n ∈ : (z − z0)nf(z) is bounded near z0, then z0 is a pole of f with the order of
the pole := min{n }.

Theorem 1.2b

∈ , f ∈ H (Ω ∖ {z0}), the following are equivalent:

1. Removable: can be extended holomorphically: sin z
z

2. Pole: Real singularity: 1
z

3. Essential singularity: 1/z

1. f is holomorphically extendable to Ω

2. f is continuously extendable to Ω

3. ∃r 0 : f is bounded in Dr(z0)

4. limz→z0(z − z0)f(z) = 0

1. f has a pole of order  at z0



Theorem 1.3 / Theorem 1.4 / Lemma

f has a pole of order n at z0, then

f(z) =
a−n

(z − z0)n
+ +

=:esz0
f

a−1

z − z0

=:z0
(f,z)

+ (z)
∈H (Dr(z0))

esz0
f = lim

z→z0

1

(n − 1)!

dn−1

dzn−1
((z − z0)nf(z))

f, g ∈ H (z0), ordz0 g = 1 ⟹ f

g
 has a simple pole with

esz0

f

g
=

f(z0)

g′(z0)

Theorem 2.1: Residue formula

F = {z0, , zn}, f ∈ H (Ω ∖ F) with poles in F , γ = ∂D positive in Ω, γ F = ⟹

∫
γ

f(z) dz = 2πi ∑
zi∈FD

eszi
f

Integral solution methods

1

∫
∞

−∞

1

1 + x2
dx

choose

f(z) =
1

1 + z2

and a contour with the top half circle of radius R and let R → ∞, bounding other
parts of the integral.

2

∫
∞

−∞

(x)

(x)
dx

2. ∃r 0, g ∈ H (Dr(z0)), g(z0) ≠ 0 : f(z) = g(z)

(z−z0)
, ∀z ∈ Dr(z0)

3. ∃r 0, h ∈ H (Dr(z0)), h(z) ≠ 0, ∀z ∈ Dr(z0) : f(z) = 1
h(z)  where ordz0 h =



where  has no zeros on the real line. For ∂ ≥ ∂ + 2 we get

∫
R

(z)

(z)
dz 0

for R the top half circle.

4

∫
∞

−∞

(x)

(x)
cos(ax) dx

choose

f(z) =
(z)

(z)
iaz

such that |iz| ≤ 1 where m z 0.

5

∫
2π

0

(cos t, sin t)

(cos t, sin t)
dt

where  has no zeros on x2 + y2 = 1. Write cos = 1
2 (z + 1

z
), sin z = 1

2i
(z − 1

z
) with

dz
iz

= d to solve.

Proposition/Corollary 3.2

z0 is a pole of f

lim
z→z0

|f(z)| = ∞

Theorem: Casorati-Weierstrass / Picard 1879

f ∈ H (Dr(z0)), z0 is an essential singularity, then f(Dr(z0)) is dense in C.

f ∈ H (Dr(z0)), z0 is an essential singularity, then |C ∖ f(Dr(z0))| ≤ 1. (Example:
for f(z) = 1/z

⟹ C ∖ f(Dr(0)) = {0}.)

Meromorphic functions
Definition: Extended complex plane

C := C {∞} with

R→∞

z ∞ = ∞, ∀z ∈ C



Definition: Meromorphic function / Proposition /
Proposition

f : Ω → C is f ∈ (Ω) if

0 f ∈ (Ω) open, connected, then

:= {z ∈ Ω ∣ f(z) = 0}

has no limit point in Ω.

Definition: Order/Valuation of a function / Proposition

Generalization of Definition Order of a function

0 f ∈ (Ω ∋ z0), ordz0
f = k:

0 f ∈ (Ω ∋ z0) ⟹

Definition: Singularities at ∞

f analytic for |z| 1
R

, R 0 has an isolated singularity at ∞ if

z ⋅ ∞ = ∞, ∀z ∈ C ∖ {0}

z
∞ = 0, ∀z ∈ C

z
0 = ∞, ∀z ∈ C ∖ {0}

1. f := {z ∈ Ω ∣ f(z) = ∞} = f −1({∞}) has no limit point in Ω.

2. f  contains the poles of f.

3. f|Ω∖f
∈ H (Ω)

4. H (Ω) ⊆ (Ω)

5. f, g ∈ (Ω) ⟹ αf + βg ∈ (Ω), or (Ω) is a vector space.

6. f, g ∈ (Ω), z0 ∈ f g, f = f + f, g = g + g, f, g ∈ H (Ω)
⟹ fg = (f + f)(g + g) = fg + , ∈ H (Ω)

7. 0 f ∈ (Ω) and the zeros do not have a limit point in Ω, then 1
f

∈ (Ω)

1. f(z0) ≠ ∞ ⟹ k ≥ 0 is the order of the zero at z0.

2. f(z0) = ∞ ⟹ k ≤ −1 is the negative order of the pole at z0.

1. k = ordz0
f ∃r 0, h ∈ H (Dr(z0)) : h(z0) ≠ 0, f(z) = (z − z0)kh(z)

2. ordz0(fg) = ordz0 f + ordz0 g

3. f + g ≠ 0 ⟹ ordz0(f + g) ≥ min{ordz0 f, ordz0 g}



g(z) := f (
1

z
)

has an isolated singularity at z = 0. f ∈ (C) and H (∞) or has a pole at
∞ ⟹ (C).

Theorem
f ∈ (C) ⟹

f(z) =
(z)

(z)
(z), (z) ∈ C[z]

Application of the Residue theorem
Lemma

0 f ∈ (Ω ∋ z0), Ω open, connected ⟹  logarithmic derivative of f : f ′

f
∈ (Ω) and

has simple poles at z0 if ordz0
f ≠ 0 with

esz0

f ′

f
= ordz0 f

Theorem 4.1: Argument principle

Ω open, connected, γ closed with interior  such that residue theorem applies. f
has no zeros or poles on γ ⟹

1

2πi
∫

γ

f ′(z)

f(z)
dz = ∑ ordz0

f = −

where  is the number of zeros,  the number of poles with multiplicity inside .

Theorem 4.3: Rouché

f, g ∈ H (Ω ⊇ Dr(z0)), |f(z)| |g(z)|, ∀z ∈ Cr(z0) ⟹ f, f + g have the same
number of zeros inside C.

Theorem 4.4: Open mapping theorem

const. ≠ f ∈ H (Ω) open, connected, then f is open (f(U) open is open).

Theorem 4.5 / Corollary 4.6: Maximum modulus principle

const. ≠ f ∈ H (Ω) open, connected ⟹

z0∈
ordz0

f≠0

–



z0 ∈ Ω : |f(z)| ≤ |f(z0)| ∀z ∈ Ω

or f cannot attain a maximum in Ω. In particular: Ω bounded, f ∈ C 0(Ω) ⟹

m
z∈Ω

|f(z)| = m
z∈∂Ω

|f(z)|

exists, since f is continuous on the bounded closed set Ω.

Homotopy and simply connected domains
Definition: Homotopy

γ0, γ1 : [a, b] → Ω, γ0(a) = γ1(a), γ0(b) = γ1(b) are homotopic in Ω if

continuous with

Theorem 5.1: Homotopy theorem
γ0, γ1 : → Ω, γ0 Ω γ1, f ∈ H (Ω) ⟹

∫
γ0

f(z) dz = ∫
γ1

f(z) dz

Definition: Simply connected

Ω is simply connected if every two curves with the same endpoints are homotopic.

Theorem 5.2

f ∈ H (Ω) simply connected has a primitive with γ closed ⟹

∫
γ

f(z) dz = 0

and any two primitives differ by a constant.

The complex logarithm
Definition: Branch of logarithm / Remark

loΩ ∈ H (Ω):

–

–

–

∃H : [a, b] [0, 1] → Ω

(t, ) H(t, )

1. H(t, ) = γ(t)

2. γ(t) := H(t, ) ∈ C 0([a, b]) with the same endpoints



ep(loΩ z) = z

Theorem 6.1

Ω ⊆ C ∖ {0} simply connected ⟹ ∃F ∈ H (Ω) : ep(F(z)) = z branch of
logarithm.

Definition: Principal branch of logarithm / Proposition /
Remark

Ω = C
− := C ∖ (−∞, 0]:

o := loΩ ∧ loΩ(1) = 0

z = ri ∈ C−, r 0, −π < < π ⟹

o z = lo r + i

lo z + lo w = lo zw does not hold in general: w = riα, z = iβ, zw = ri with
α, β, ∈ (−π, π) ⟹ = α + β + γ, γ ∈ {−2π, 0, 2π} thus
lo zw = lo z + lo w γ = 0 α + β ∈ (−π, π)

o({|z| = r ∣ −π < r z < π}) = {e w = lo|z|, −π < m w < π}

o({z ∣ r z = }) = {w ∣ m w = }

We can define a branch of logarithm for any Ω = C ∖ ({z ∣ r z = α} {0}).

Definition: Complex power

loΩ branch of logarithm:

zα := ep(α loΩ z)

This depends on loΩ : loΩ loΩ +2πik ⟹

ep(α(loΩ z + 2πik)) = zα2πikα

Principal branch of logarithm:

1. z ≠ 0 ⟹ 0 Ω is necessary

2. Ω = C ∖ {0} does not work:
ep(f(z)) = z ⟹ f ′(z) ep(f(z)) = 1 ⟹ f ′(z) = 1

z
 does not give 0 integrated

over every closed path

3. Two logarithms ,  differ by
− = 2πin, n ∈ : ep((z) − (z)) = 1 ⟹ (z) − (z) ∈ 2πi constant



(z1/) = ep(
1

lo z)ep(
1

lo z)= ep( lo z)= z

Theorem 6.2 / Corollary

f ∈ H (Ω) simply connected, f(z) ≠ 0, ∀z ∈ Ω ⟹

∃g ∈ H (Ω) : ep(g(z)) = f(z)

called the logarithm of f and

∃h ∈ H (Ω) : h2(z) = f(z)

called the square root of f.

Proposition
f ∈ (Ω), := Ω ∖ f : f ∈ H (), γ1 Ω γ2 ⟹

∫
γ1

f(z) dz = ∫
γ2

f(z) dz

and if γ2 satisfies residue theorem with interior ⟹

∫
γ1

f(z) dz = 2πi∑
w∈

esw f

Definition: Winding number

C ∋ z0 γ closed:

γ(z0) = indγ z0 :=
1

2πi
∫

γ

1

z − z0
dz

Proposition 1.3

γ closed, γ : Ω = C ∖ im γ → C continuous takes values in ⟹  is constant on any
connected subset of Ω with γ(z) = 0, |z| large enough.

Theorem: Residue formula

Generalization of Theorem 2.1 Residue formula

f ∈ (Ω) simply connected, γ closed in = Ω ∖ f ⟹

∫
γ

f(z) dz = 2πi ∑
z0∈f

γ(z0) esz0 f



Conformal maps
Definition: Conformal map

U ,  open, f : U →  injective, holomorphic is a conformal map.

f bijective conformal map is a conformal equivalence / biholomorphic /
holomorphic isomorphism.

Proposition 1.1 / Remark / Corollary

f : U →  conformal ⟹

f ′(z) ≠ 0 ∀z ∈ U

and f −1 : im f ⊆ → U  is holomorphic.

Thus f : U →  conformal equivalence f −1 conformal equivalence (conformal
equivalence is an equivalence relation).

f : U →  conformal equivalence, then

is a linear isomorphism of vector spaces.

Examples

Riemann mapping theorem
Theorem 8.3.1: Riemann mapping theorem / Corollary

≠ Ω C simply connected, z0 ∈ C ⟹ ∃! conformal equivalence

Any simply connected proper subsets of C are conformally equivalent.

T : H () → H (U)

∘ f

f : → , z z−i
z+i

 with f −1 : w i 1+w
1−w

f : {z ∈ C ∣ 0 < r z < π
n
} → , z zn with f −1 : w w1/n

o : C− → {z ∈ C ∣ e z 0 ∧ −π < m z < π} with o−1 = ep

C C , since a map C →  entire would be bounded and thus constant
(Theorem/Corollary 4.5 Liouville's Theorem)

F : Ω →

F(z0) = 0

F ′(z0) ∈ (0, ∞) ⊆ C



Theorem 2.2 (Step 1) / Corollary

f : →  automorphism ⟹ ∃ ∈ , α ∈ :

and every map of this form is an automorphism of .

The map in Theorem 8.3.1 Riemann mapping theorem / Corollary is unique:
fi : Ω → , fi(z0) = 0, f ′

i (z0) 0 ⟹ f1 = f2.

Lemma: Schwarz
f ∈ H (, ), f(0) = 0 ⟹

Theorem 2.4

g : →  automorphism ⟹

g(z) =
az + b

z +
:= ( )∈ L2()

with det 0.

Proposition (Step 2)

≠ Ω C open, connected ⟹ ∃f : Ω →  conformal with 0 ∈ f(Ω) (or: Ω is
conformally equivalent to a subset of ).

Lemma
:= {f : Ω → ∣ conorml ∧ f(z0) = 0} ⟹

:= sup
f∈

|f ′(z0)| < ∞

Key Proposition
∃f ∈ : |f ′(z0)| =

f(z) = i α − z

1 − αz

f(0) = iα

f ′(0) = i(|α|2 − 1)

–

1. |f(z)| ≤ |z|, ∀z ∈

2. ∃z0 ≠ 0 : |f(z0)| = |z0| ⟹ ∃ ∈ : f(z) = iz

3. |f ′(0)| ≤ 1 with equality f(z) = iz

a b



Proposition (Step 4)

f ∈  with

|f ′(z0)| = = sup
f∈

|f ′(z0)|

is a conformal equivalence.

Theorem: Montel

(fn)n ⊆ H (Ω), ∀ ⊆ Ω compact, ∃k 0 : |fn(z)| < k, ∀z ∈ ⟹ ∃(fnk
) converging

uniformly on compact sets.

Proposition

(fn)n ⊆ , fn → f, ∀z ∈ Ω uniformly on compact sets
⟹ f = const. f ∈ : limn→∞ f ′

n(z0) = f ′(z0).

Lemma

Ω open, connected, fn : Ω →  conformal, fn → f uniformly on compact sets
⟹ f = const. or injective.


