Holomorphic functions

Proposition
H(Q) is a C-vector space with
f,9e Q) = af +pg e A(Q)
f,9e Q) = fge A (Q)
fi9€ H(2),9(20) #0 = 5 € ()
feX(U),ge H(U) = gofeH(Q)
Proposition 2.3
f(Z) = U’(way) + iv(az,y) S %(ZO) =
ou Ov ou Oov

8z 8y Oy Oz

Ou  Ou Ou Ou Ou Ov
ox 0 ox 0 9z Oz
J f _ Y _ Y _ Ox ox
W _du » du
oz Oy Oy or Or or

and |det Jf| = | f'(z0)|%.

or

Theorem 2.4
f:u+iv,u,v601/\g—z: g—;,g—; :—g—g — f e H(NQ).

Theorem 2.6

o0

f(z) = ianz” € #(Dg(0)) f'(z) = Znanz”_l € #(Dg(0))

n=0

with & = lim sup,, . |an|*".

Complex line integrals

Definition: Integral along path

v:la,b] = C, fe C%):



b
/ f(2) dz = / F () (2) dt

Proposition

fage 00(71772 : [a’ab] — (C) —

/ 2) + Bg(2) /f dz—|—ﬁ/
/_sz Z:—sz &
[Y1+72f(Z)dz:[ylf(Z)dz+A2f(z)dz

/ #(2) dz| < supl(2)|L(v)

zEY

Theorem 3.2

feC%Q),y:a,b > QF =f =

Cauchy's Theorem and its applications

Theorem 1.1: Goursat

feHQ),TCQTCQatrangle =

/Tf(z) dz =0

Theorem 2.1

f€H#(Di(z) = IF:F' =§

Theorem 2.2b: Cauchy's Theorem for a disc
f € C%Di(20)), f € #(Dy(20) \ 21) =

/ f()dz=0  Vye Dy(z0),1(a) = 7(b)

Cauchy Integral Formulae

Theorem 4.1: Cauchy Integral Formula ITheorem 4.4 |
Corollary 4.3: Cauchy inequalities



f € 5£(Q D D), C := 8D positive orientation —-
= . (w) dw = f(2) Vze D
2m Jo w— 2z

f € %(Q D) Dr(zO)) —

> f(”) (20) 1 f(w)

n! 2mi

feH Q2 D, (z)) =

n! - Sup\w—zo\zrlf(w)‘

lrn

[F™(20)] <
Theorem/Corollary 4.5: Liouville's Theorem
f € H(C),sup,c|f(2)] <oo = f = const.

Definition: Order of a function
I ACEED:
ord,, f := min{k > 0| f®(z,) £ 0}
Proposition 4.6
feHH(Q>z) =

ord,, f =00 = f(2) =0,Vz € D,(z)

Vz € D,.(z0)

ord,, f #0 = 3h € S£(D:(20)),h(20) # 0: f(2) = (2 — 20)”" %0 h(2),Vz € D,(z0)

ord,, (f + ¢g) > min{ord,, f,ord,, g} and ord, (fg) = ord,, f + ord,, g

Theorem 4.8 | Corollary 4.9: Identity theorem | Theorem

4.8b | Corollary 4.9b: Identity theorem /| Theorem

f € (), an infinite set with limit point zy € Q, 2, . Then f(z) =0,Vz€ = f 0

fr9€e(Q),f(z) =9(2),V2zeU# = f g

f € s(Q), then the following are equivalent:

fo
dzp € Q:ord,, f =00
{z € Q| f(z) = 0} has a limit point in 2.



f,g € H(Q), then the following are equivalent:

g
Jz0 € Q: f™(20) = g (2),¥n > 0
{z € Q| f(z) = g(2)} has a limit point in .

f,9e #(Q2),fg 0 = f 04 0.

Theorem 5.1: Morera's Theorem

Converse to

f€C%Q),YD,(2) C Q,VT, T C Dy(2) : 7 f(2)dz2 =0 = f € 5(Q).
Sequences of holomorphic functions

Definition: Locally uniformly convergent /| Uniformly
convergent on compact sets / Proposition /| Theorem 5.2 |
Theorem 5.3

fn: Q2 — Cis called locally uniformly convergent or uniformly convergent on
compact sets if the following equivalent hold:

Vzo € Q,3 0,D(z0) € Q: fy|p(z) cOnverges uniformly.
v C Q compact, f,| converges uniformly.

fn € C°(Q) locally uniformly convergentto f = f e C°%(Q).
fn € (Q) locally uniformly convergentto f — f € J2(Q).

fn € S2(Q) locally uniformly convergent to f — £ locally uniformly convergent
to f’.

Theorem: Weierstrass -test

fo i Q—=C, AU CQ I 3()n>1 Cyn >0 n(2)] <pn,V2eU,Vn,, <co =

> fa

n=1

converges uniformly on U.

Proposition 2.1: Riemann Zeta | Example



0=3 =

n=1

converges absolutely and uniformlyon U :={ € C|e > 1+ },V 0and
ceH({ecCle 1}).

z€ ={z€C|mz 0}:

00
§ : Tin2 § :27rin2z
(Z):I 2mz:1+2
ne n=1

Definition: Isolated singularity / Singularity types
zo € Cis a possible isolated singularity of fif 3r 0: f € (D, (z0)).
Singularities:

Removable: can be extended holomorphically: 22
. . - .1

Pole: Real singularity: =

Essential singularity: /2

Definition: Removable singularity / Theorem: Riemann's
continuation theorem

feA(Q\{z0}), 20 is a removable singularity if
3f € Q) 1 f(2) = f(2), ¥z € )\ {z0}.

fe#(Q\{z}), 2z is a removable singularity if the following equivalent hold:

f is holomorphically extendable to €2
f is continuously extendable to 2
3r 0: fis bounded in D, (z)

lim, ,,,(z— 20)f(2) =0
Definition: Pole

If 3n € : (2 — 2¢)" f(2) is bounded near z, then z; is a pole of f with the order of
the pole := min{n }.

Theorem 1.2b
€,fe(2)\{z}), the following are equivalent:

f has a pole of order at z,



Ir 0,9 € #(D(20)),9(20) # 0+ f(2) = L2, Vz € D, (2)

(Z—ZQ) ’

dr 0,h € H(D,(20)),h(z) # 0,Vz € D,(20) : f(2) = ﬁ where ord,, h =

Theorem 1.3/ Theorem 1.4/ Lemma

f has a pole of order n at zo, then

:I:esz0 f
a_p a_
f&) =t -+ (2
(z— zo)" z— 2 |
| () €A (Dy(20))
'ZO b
1 dr—1

((z = 20)"f(2))

e f = zlgrzlo (n—1)! dzn!

f,g € H(z0),0rd;; g=1 — % has a simple pole with

I fz0)
g9  9g(2)

es,

Theorem 2.1: Residue formula

F ={z0, ,2zn}, f € (2 \ F) with poles in F,y = 8D positive in Q,y F = —

1
[ e
oo 1+ 22 v
choose
1
f(Z)_1+Z2

and a contour with the top half circle of radius R and let R — oo, bounding other
parts of the integral.

2

—

g 8

=E
g



where has no zeros on the real line. For 0 > 0 + 2 we get

for g the top half circle.

4
> (z)
/_OO mcos(ax) dz
choose
_ @iaz
=3

such that || < 1 where m z 0.

5
/27r (cost,sint) dt
0

(cost,sint)

where has no zeros on z? + y* = 1. Write cos = 4 (2 + 1),sinz = - (z — 1) with

dz _ { to solve.

Proposition/Corollary 3.2
zp Is a pole of f

lim|£(2)] = o0

Z— 2

Theorem: Casorati-Weierstrass / Picard 1879
f € #(D,(z0)), z0 IS an essential singularity, then f(D,(zo)) is dense in C.

f € #£(D,(z0)), 20 is an essential singularity, then |C \ f(D,(z0))| < 1. (Example:
for f(z) = V* = C\ £(D,(0)) = {0}.)

Meromorphic functions

Definition: Extended complex plane
C := C {oo} with

z 00 =00,Vze C



z-00 =o00,Vz € C\ {0}
=0,Vze C
= 00,Vz € C\ {0}

z
00
z
0

Definition: Meromorphic function / Proposition /
Proposition

f:Q—=Cis fe (Q)if

ri={z2€ Q| f(2) = 0} = f1({oo}) has no limit point in €.
7 contains the poles of f.

fla\, € ()

#(Q) € ()

f,9€ () = af+ Bg e (Q),or () is a vector space.

fage(Q)szEf gaf:f_f_f)g:g—i_gafage%(g)
= f9=0+Ne+9) =pn+, ()

0 f € () and the zeros do not have a limit point in 2, then + € ()

0 f € (2) open, connected, then
={zc Q| f(z)=0)
has no limit point in €.
Definition: Order/Valuation of a function / Proposition
Generalization of
0 fe (2> z),ord,, f=Ek:

f(z9) # co = k > 0 s the order of the zero at zy.
f(z0) = 00 = k < —1is the negative order of the pole at zy.
0 fe(232) =
k=ord,, f 3r 0,h € (Dr(20)): h(z0) # 0, f(2) = (2 — 20)*h(2)
Ordzo(fg) = Ordzo f =+ Ordzo g
f + g 7é O = Ordzo (f + g) Z IIliIl{OI'dzO f, Ordzo g}

Definition: Singularities at oo

f analytic for |z| &, R 0 has an isolated singularity at oo if



g9(2) == f (%)

has an isolated singularity at z = 0. f € (C) and s#(o0) or has a pole at
oo = (C).

Theorem

fe (€ =

fz) = @ (2), (2) € C[¢]

Application of the Residue theorem

Lemma

0 fe€ (23 z),Qopen, connected —> logarithmic derivative of f : f?’ € (Q) and
has simple poles at z; if ord,, f # 0 with

7

Theorem 4.1: Argument principle

= ord,, f

€Sz,

 open, connected, v closed with interior such that residue theorem applies. f
has no zeros or poles on v —>

PO o
i [ 55 927 3 it

20€E
ord,, f#0

where is the number of zeros, the number of poles with multiplicity inside .

Theorem 4.3: Rouché

fr9€ H#(Q D D,(2)),|f(2)| 19(2)|,Vz € C.(20) = f, f+ g have the same
number of zeros inside C.

Theorem 4.4: Open mapping theorem
const. # f € () open, connected, then f is open (f(U) open is open).
Theorem 4.5 | Corollary 4.6: Maximum modulus principle

const. # f € (1) open, connected —>



z0 € Q: [f(2) < [f(z0)] Vze
or f cannot attain a maximum in . In particular: Q bounded, f € Cc'() =

m |f(2) =m_|f(2)

zeQ)

exists, since f is continuous on the bounded closed set (.

Homotopy and simply connected domains
Definition: Homotopy
Y0,71 : [@,b] = ©,70(a) = 71(a),70(b) = 71(b) are homotopic in € if

3H : [a,b] [0,1] — Q

0,
(t,) H(t)
continuous with

H(t,) = ()
v(t) :== H(t,) € C°(a,b]) with the same endpoints

Theorem 5.1: Homotopy theorem

Yo, Y1 ¢ ? SZ’ Yo Q )1).}86 %(Sl) :
d = d
" f(Z) z /YI f(Z) z

Definition: Simply connected

Q is simply connected if every two curves with the same endpoints are homotopic.

Theorem 5.2

f € #(Q) simply connected has a primitive with v closed —-

Lf(z) dz=0

and any two primitives differ by a constant.

The complex logarithm

Definition: Branch of logarithm / Remark

IOQ € %(Q)



ep(log 2) = 2

##£0 = 0 Qis necessary

2 =C)\ {0} does not work:
ep(f(z)) =2z = f'(2)ep(f(2)) =1 = f'(2) = < does not give 0 integrated
over every closed path

Two logarithms , differ by
— =2min,n € :ep((z) — (2)) =1 = (2) — (2) € 2mi constant

Theorem 6.1

Q C C\ {0} simply connected — 3F € s#(R?) : ep(F(z)) = z branch of
logarithm.

Definition: Principal branch of logarithm | Proposition /
Remark

Q=C :=C\ (—00,0]
o :=loq A log(1) =0
z=r'cC,r 0,—7< <7 —
oz=1lor+1

lo z + low = lo zw does not hold in general: w = r*®, z = ¥, zw = r* with

a, B, € (—m7m) = =a+B+7,y€{-2m0,2n} thus
lozw=loz+low =0 a+pB¢€(—mmn)

o{lz|=r| —r<rz<n})={ew=1lo|z|, T <mw < 7}
o{z|rz=})={w|mw=}
We can define a branch of logarithm forany Q = C\ ({z | rz = a} {0}).
Definition: Complex power
lo branch of logarithm:

2% 1= ep(alog, 2)
This depends on log, : log log +27ik —

ep(a(IOQ z+ 271'7,]{;)) — 2mika

Principal branch of logarithm:



(1) =ep (llo z) ep (llo z): ep (—10 z) =z

Theorem 6.2 | Corollary
f € () simply connected, f(z) #0,Vz € Q —
dg € A#(Q2) : ep(g(2)) = f(2)
called the logarithm of f and
Jh € H#(Q) : K*(2) = f(2)
called the square root of f.
Proposition

fe), =Q\;:feH()mnar =

and if v, satisfies residue theorem with interior —-
f(z)dz = 2mi Z esy f
Y1 we

Definition: Winding number

C > 2y + closed:

1 1
+(20) = indy 2z := / dz
v

211 z— 2y

Proposition 1.3

v closed, , : @ = C\ im~y — C continuous takes values in — is constant on any
connected subset of Q with ,(z) = 0, |z| large enough.

Theorem: Residue formula
Generalization of

f € (Q) simply connected, v closed in = Q\ ; =

/f(z) dz = 2mi ZV('ZO) esz, f

Z()Ef



Conformal maps

Definition: Conformal map
U, open, f: U — injective, holomorphic is a conformal map.

f bijective conformal map is a conformal equivalence / biholomorphic /
holomorphic isomorphism.

Proposition 1.1 / Remark | Corollary
f:U — conformal —-

Fl(2)#£0 VzeU
and f~1:im f C — U is holomorphic.

Thus f: U — conformal equivalence f~! conformal equivalence (conformal
equivalence is an equivalence relation).

f: U — conformal equivalence, then

T: #() — #U)
of

is a linear isomorphism of vector spaces.

Examples

f: =,z ZZ with f=1:w zif—g
f:{zeCl0<rz<Z}—, 2 2" with 71w w'/?
0:C" = {2ze€Clez 0OAN—m<mz<n}witho ' =ep

C ¢, since a map C — entire would be bounded and thus constant

( )
Riemann mapping theorem

Theorem 8.3.1: Riemann mapping theorem / Corollary
=# ) C simply connected, z, € C = 3! conformal equivalence

F:Q—
F(Z()) =0
F'(z) € (0,00) CC

Any simply connected proper subsets of C are conformally equivalent.



Theorem 2.2 (Step 1) / Corollary

f: — automorphism — Je€,a€:

@)=t
— Qaz
£(0) = o

£'(0) ="(la* ~ 1)
and every map of this form is an automorphism of .

The map in IS unique:
fi: =, fi(z0) =0, f{(20) 0 = f1=fo

Lemma: Schwarz
fesn(,), f(0)=0 =

()| < |2],Vz €
20 # 0: [ f(z0)] = |20l = 3 € : f(z) =
f(0)] < 1 with equality  f(z) = 2

Theorem 2.4

g: — automorphism —

with det 0.
Proposition (Step 2)

# Q C open, connected — 3f : Q — conformal with 0 € f(2) (or: Qis
conformally equivalent to a subset of ).

Lemma
:={f:Q — |conorml A f(z2¢) =0} —

:= sup|f'(zg)] < 00
fe

Key Proposition
f € :[f'(20)| =



Proposition (Step 4)
f € with

|[f'(z0)l = = iup\f’(zO)!

is a conformal equivalence.
Theorem: Montel

(fn)n € 2(0),V C Qcompact, 3, 0: |f,(2)| <, Vze = 3(f,,) converging
uniformly on compact sets.

Proposition

(fn)n €, fn — f, ¥z € Q uniformly on compact sets
=—> f=const. f€ :lim,.x f,,(20) = f'(20).

Lemma

Q open, connected, f, : @ — conformal, f, — f uniformly on compact sets
= f = const. Or injective.



